Sepanta Laser Spadan

شرکت سپنتا لیزر اسپادان سهامی خاص

Sepanta Laser Spadan

شرکت سپنتا لیزر اسپادان سهامی خاص

تشدید پلاسمون سطحی

پلاسمون، نوسانات جمعی الکترونهای رسانش فلز در هنگام عبور الکترون پر انرژی است، اگر این الکترون‌ها درون حجم یک فلز قرار داشته باشد به آنها پلاسمون‌های حجمی گفته می شود. در سال 1956، گروهی از پژوهشگران  به صورت تحلیلی دلیل افت سریع انرژی الکترون‌ها در عبور از فلزات را بیان نمودند و نتیجه گرفتند که این انرژی صرف حرکت تجمعی و نوسان گونه الکترون‌های آزاد فلز می‌شود و آن را پلاسمون نامید. دلیل این نام گذاری شباهت این نوسانات الکترون ها با نوسان های ذرات محیط پلاسما بود .  

محلول کلوئیدی از نانوذرات طلا به دلیل جذب پلاسمون سطحی، رنگ قرمز شدیدی را از خود نشان می‌دهد . وجود یک فصل مشترک بین مواد با ثابت دی‌الکتریک مختلف، ممکن است به فرایندهای تحریک ویژه سطحی منجر شود. فصل مشترک میان ماده‌ای با ثابت دی الکتریک مثبت و ماده‌ای با ثابت دی‌الکتریک منفی مثل فلزات، می‌تواند باعث انتشار امواج الکترومغناطیسی ویژه ای شود که امواج پلاسمون سطحی خوانده می‌شوند و در محدوده نزدیک سطح باقی می‌ماند. این تشدید پلاسمون سطحی، توسط حرکت همدوس الکترون‌های باند هدایت، که با میدان الکترومغناطیس برهم کنش می‌کند، بوجود می‌آید. فرکانس و عرض جذب پلاسمون وابسته به شکل و اندازه نانوذرات فلزی است، همچنین به ثابت دی الکتریک محیط و فلز هم وابسته است. فلزات نجیب مثل نقره و طلا دارای یک تشدید پلاسمون مرئی بسیار قوی هستند، این در حالی است که بسیاری از دیگر فلزات واسطه، فقط یک باند جذبی ضعیف و پهن در ناحیه فرابنفش دارند. این تفاوت مربوط به کوپلای قوی موجود میان انتقال پلاسمون و تحریک بین باندی است، همچنین الکترون‌های باند هدایت فلزات نجیب می‌توانند آزادانه و مستقل از پس زمینه یونی حرکت کنند. یون ها فقط به عنوان مراکز پراکنده کننده عمل می‌کنند. این مسئله در فلزات نجیب قابلیت پلاریزاسیون زیادی را به الکترون ها می‌دهد که تشدید پلاسمون را به سمت فرکانس‌های پایین جابه‌جا می‌کند.

پلاسمون را می‌توان در تصویرکلاسیکی به عنوان نوسان جمعی الکترون‌های آزاد دانست و با توجه به یون‌های مثبت ثابت در یک فلز شرح داد. برای تجسم نوسان پلاسما، تصور کنید یک مکعب فلزی در یک میدان الکتریکی خارجی که جهت آن به سمت راست است، قرار می‌گیرد. پس الکترون‌های فلز به طرف چپ کشیده می‌شوند و یون‌های مثبت در طرف راست باقی می‌مانند، اکنون اگر میدان الکتریکی خارجی از بین برود الکترون ها به طرف راست حرکت می‌کنند و همدیگر را دفع کرده و توسط یونهای مثبت جذب می‌شوند در واقع الکترون ها شروع به نوسان در یک فرکانس خاص می‌کنند. که به این نوسانات طولی الکترون‌های رسانش در فلز نوسان پلاسما گفته می‌شود، که پلاسمون یک کوانتوم از این نوسانات پلاسماست. شرط نوسان به این صورت است که فرکانس فوتون های پرتو تابش شده با فرکانس طبیعی الکترون‌های سطحی یکسان باشد.

   به پلاسمون‌های تشکیل شده در سطح مشترک یک فلز و دی الکتریک پلاسمون‌های سطحی می‌گویند .  پلاسمون های سطح توسط فوتون‌های نورمرئی یا فرابنفش برانگیخته می‌شوند که به این پدیده تشدید پلاسمون سطحی گفته می‌شود. پلاسمون‌های سطحی، پلاسمون‌های محدود شده به سطح هستند و به شدت با نور ناشی از پلاریتون‌ها واکنش نشان می‌دهند. آن‌ها در فصل مشترک بین خلاء و مواد با ثابت دی الکتریک موهومی کوچک مثبت و حقیقی بزرگ منفی (معمولاً فلز و دیالکتریک آلاییده) رخ می‌دهد. برای بررسی پلاسمون سطحی، ابتدا باید رفتار فلزات در مقابل میدان الکترومغناطیسی نور مورد مطالعه قرار گیرد. پاسخ اپتیکی فلزات توسط تابع دی الکتریک آن‌ها شناخته می‌شود.

   پلاسمون نقش مهمی در خواص نوری فلزات دارد که با توجه به کاربرد مورد نظر، فرکانس نوری را که می خواهیم بتابانیم با فرکانس پلاسما هماهنگ می‌کنیم تا تشدید رخ دهد. در بیشتر فلزات،  فرکانس پلاسما به ناحیه فرابنفش کشیده می شود بنابراین این فلزات بازتاب کننده نور در ناحیه مرئی می باشند و به همین دلیل درخشنده و براق هستند .

  در ابعاد نانو، نانو ساختارهای فلزی خواص متفاوتی نسبت به حالت توده ایشان دارند، نانوذره ها دارای تعداد زیادی اتمهای سطحی در مقایسه با اتم‌هایی که درون حجم آن‌ها قرار دارند می‌باشد. این خود باعث افزایش اهمیت اثرات سطحی در مقایسه با اثرات حجمی است. در واقع نانو ذرات در پاسخ به میدان‌ها و نیروهای خارجی اثراتی را نشان می دهند که وابسته به اندازه و شکل ذره و به همان نسبت به ثابت دی الکتریک محیط و فلز میباشد که بر همین اساس می توانیم در نمودار طیف نوری، سایز نانو ذرات را تخمین بزنیم. وابستگی طیف نوری نانوذره های بزرگ به اندازه آنها، یک اثر خارجی است که تنها توسط ابعاد ذره نسبت به پرتو الکترومغناطیسی کنترل می‌شود.

برای نانو ذره‌های کوچک اثرات ذاتی (تغییرات نسبت حجم به سطح ماده) اندازه نیز نقش پیدا می‌کند. تغییرات اندک در دی‌الکتریکِ اطراف نانو حجم، بر روی تشدید پلاسمون‌های سطحی اثر می‌گذارد، به طوری که این تغییرات خود را در میزان پرتو پراکنده شده، پرتو جذب شده و یا تغییر طول موج آن نشان می‌دهد.

نانوآنتن‌ها می‌توانند برای تولید امواج الکترونیکی سطحی موسوم به "پلاسمون سطحی" به‌کار گرفته شوند. برای این کار باید امواج الکترومغناطیس را در سطح تماس نانوساختارهای فلزی (معمولاً طلا) و یک دی الکتریک (معمولاً هوا) محدود کرد.

زمانی که فرکانس نوسان پلاسمون ایجاد شده با امواج الکترومغناطیسی برخوردی همسان باشد آنگاه پدیده "تشدید پلاسمون سطحی محلی" (LSPR) اتفاق می‌افتد. با این کار، میدان الکترومغناطیس در فضایی بسیار کوچک در حدود ۱۰۰ نانومتر مکعب متمرکز می‌شود. هر جسمی که وارد این منطقه، موسوم به نانوفوکوس، شود روی LSPR تأثیر می‌گذارد.

پژوهشگران از این روش استفاده کردند تا بتوانند اتم‌ها یا ذرات منفرد را شناسایی کنند. آن‌ها یک چیدمان جدید ارائه کردند که در آن یک نانوذره پالادیوم را در منطقه فوکوس ایجاد شده توسط نانوآنتن، قرار دادند. برهمکنش میان طلا و نانوذره پالادیوم می‌تواند منجر به تولید LSPR شود به‌طوری‌که هر ذره‌ای که به نزدیکی این منطقه آورده شود عملکرد دی‌الکتریک ذره پالادیوم را تغییر می‌دهد. پرتو پراش یافته بوسیله این سیستم میکروسکوپ میدان تاریک ضبط شده و می‌توان با آن تغییر LSPR را رصد کرد.

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.