لیزر پرتو گاما یا گریزر دستگاهی فرضی است که میتواند پرتوهای گامای منسجمی تولید کند، درست همانطور که یک لیزر معمولی پرتوهای منسجمی از نور مرئی تولید میکند.[1]
ویتالی گینزبورگ در سخنرانی نوبل خود در سال 2003 از لیزر پرتو گاما به عنوان یکی از سی مشکل مهم در فیزیک نام برد.[2]
تلاش برای ساخت یک لیزر پرتو گامای عملی بین رشتهای است و شامل مکانیک کوانتومی، طیفسنجی هستهای و نوری، شیمی، فیزیک حالت جامد، و متالورژی و همچنین تولید، تعدیل و برهمکنش نوترونها میشود و شامل دانش تخصصی و تحقیق در همه این زمینه ها این موضوع شامل علوم پایه و فناوری مهندسی می شود
کاربردهای پرتو ایکس منسجم شامل تصویربرداری پراش منسجم، تحقیق بر روی پلاسمای متراکم (غیر شفاف در برابر تشعشعات مرئی)، میکروسکوپ اشعه ایکس، تصویربرداری پزشکی با تفکیک فاز، تحقیقات سطح مواد و سلاح است.
یک لیزر اشعه ایکس نرم می تواند پیشرانه لیزری فرسایشی را انجام دهد.
لیزرهای اشعه ایکس به دلیل بهره زیاد در محیط لیزر، طول عمرهای کوتاه در حالت فوقانی (1 تا 100 ثانیه) و مشکلات مربوط به ساخت آینه هایی که می توانند اشعه ایکس را منعکس کنند، لیزرهای اشعه ایکس معمولاً بدون آینه کار می کنند. پرتو اشعه ایکس با یک عبور واحد از محیط افزایش تولید می شود. تشعشع ساطع شده، بر اساس انتشار خود به خودی تقویت شده، انسجام فضایی نسبتاً کمی دارد. این خط عمدتاً با داپلر گسترش یافته است که به دمای یون ها بستگی دارد.
از آنجایی که انتقال لیزر مرئی معمول بین حالت های الکترونیکی یا ارتعاشی با انرژی هایی تا حدود 10 eV مطابقت دارد، رسانه های فعال متفاوتی برای لیزرهای اشعه ایکس مورد نیاز است. مجدداً، اگر قرار است لیزرهای پرتو گاما با فرکانس بالاتر ساخته شوند، باید از رسانههای فعال مختلف - هستههای اتمی برانگیخته - استفاده شود.
لیزر آبشار کوانتومی
لیزر کوانتومی آبشار (QCL) نوعی لیزر نیمه هادی است که در قسمت میانی تا مادون قرمز طیف الکترومغناطیسی نور منتشر می کند. لیزرهای کوانتومی آبشار مزایای زیادی را ارائه می دهند: آنها در طیف مادون قرمز میانی از 5.5 تا 11.0 میکرومتر (900 سانتی متر در 1 تا 1800 سانتی متر در 1) قابل تنظیم هستند. ارائه زمان پاسخ سریع ؛ و روشنایی طیفی را که حتی از منبع سنکروترون به طور قابل توجهی روشن تر است ، فراهم می کند.
لیزرهای آبشار کوانتومی شامل لایه های متناوب از مواد نیمه رسانا هستند و چاههای انرژی کوانتومی را تشکیل می دهند که الکترونها را به حالتهای خاص انرژی محدود می کند. همانطور که یک الکترون در محیط لیزر حرکت می کند ، از یک چاه کوانتومی به حالت دیگر حرکت می کند ، که توسط ولتاژ اعمال شده بر روی دستگاه ایجاد می شود. در مکانهای دقیق ، که "منطقه فعال" نامیده می شود ، الکترون از یک حالت انرژی به حالت پایین تر منتقل می شود و در این فرایند ، فوتون ساطع می کند. الکترون در ساختار خود ادامه می دهد و هنگامی که با ناحیه فعال بعدی برخورد می کند ، دوباره تغییر می کند و فوتون دیگری از خود ساطع می کند. QCL ممکن است تا 75 ناحیه فعال داشته باشد و هر الکترون با عبور از ساختار ، تعداد زیادی فوتون تولید می کند.
طول موج خروجی توسط ساختار لایه ها تعیین می شود تا مواد لیزر ، و این امکان را برای سازندگان دستگاه ایجاد می کند که طول موج را به گونه ای تنظیم کنند که لیزرهای دیودی قابل تنظیم نباشند. طول موج خروجی لیزر دیود محدود به 2.5 میکرومتر است ، اما QCL ها در طول موج های بسیار طولانی تر عمل می کنند: دستگاههای تولید مادون قرمز موج میانی تا 11 میکرومتر در دسترس هستند و برخی از قطره چکانهای 25 میکرومتر به صورت آزمایشی ساخته شده اند.
گفته می شود که سیستم های میکروسکوپی مبتنی بر QCL به مقدار نسبتاً کمی قدرت و اندازه کوچک نیاز دارند و می توانند جایگزین FTIR بزرگتر و کندتر (طیف سنجی جرمی Fourier) و طیف سنجی جرمی شوند.
اخبار اپتیک و فوتونیک در سایت سپنتا لیزر اسپادان