اینتل تراشههایی میسازد، اما همه آنها انواع نیمهرساناهای آشنا نیستند. این شرکت همچنین تراشههای فوتونیک سیلیکونی میسازد که بخشی از صنعت رو به رشدی است که از مواد برای کنترل نور استفاده میکند.
در ارائهای در کنفرانس لیتوگرافی و الگوی پیشرفته SPIE، هایشنگ رونگ، دانشمند ارشد اینتل، در مورد این فناوری و چشمانداز آن صحبت کرد. به گفته وی مهمترین کاربرد، ارتباطات نوری است، فناوری که با تعدیل پرتوهای لیزر، ترافیک اینترنت جهان را حمل می کند. کاربردهای دیگر در سنجش زیست پزشکی و سه بعدی و همچنین محاسبات کوانتومی و ارتباطات نهفته است.
برای همه این برنامه ها، کاهش هزینه ها در عین بهبود عملکرد بسیار مهم است. با توجه به اولین مورد از این نیازها، راه حل های سنتی فوتونیک معمولاً به جای میلیاردها ترانزیستور یکپارچه شده روی یک تراشه، دارای چند جزء مجزا هستند.
رونگ در مورد این سطح پایین ادغام گفت: "این باعث می شود هزینه بسیار بالا باشد."
چندین دهه پیش، محققان اینتل و جاهای دیگر شروع به بررسی سیلیکون به عنوان راه حلی برای این مشکل کردند. سیلیکون در مورد کنترل نور دارای مزایا و معایبی است. از جنبه مثبت، شفافیت در طول موج های مادون قرمز مورد استفاده برای ارتباطات نوری دوربرد است. همچنین دارای پایه ساخت عظیمی برای ساخت دستگاه هایی با ویژگی های میکروسکوپی است و بنابراین دستگاه های فوتونیکی ساخته شده از سیلیکون می توانند بسیار فشرده باشند.
از طرف دیگر، سیلیکون چندین معایب دارد. از آنجایی که در پنجره ارتباطات مادون قرمز شفاف است، نمی تواند سیگنال نور را تشخیص دهد. علاوه بر این، در زمانی که دانشمندان شروع به کار بر روی فوتونیک سیلیکون کردند، آنها همچنین نمی توانستند با استفاده از این ماده نور تولید کنند.
رونگ خاطرنشان کرد، با این حال، سیلیکون میتواند یک موجبر باشد، وسیلهای که نور را به جایی که میخواهید هدایت میکند. این قابلیت به این معنی بود که سیلیکون به عنوان راهی برای کنترل نور وعده داده بود. به عنوان مثال، یک موجبر فوتونیک سیلیکونی نمایش اولیه یک تشدید کننده حلقه بود. نور وارد شده به ساختار دایره ای تنها در صورتی می تواند خارج شود که طول موج مناسبی داشته باشد. بنابراین، این بدان معنی است که تشدید کننده می تواند یک دروازه باشد که فقط طول موج های خاصی را از خود عبور می دهد.
این انتقال پس از غلبه بر برخی مشکلات توسط محققان، با راندمان بالا و تلفات کم اتفاق افتاد. برخی از آنها مربوط به لیتوگرافی و الگوسازی بودند، مانند ناهمواری های بسیار جزئی در دیواره های جانبی حلقه میکروسکوپی. این دیوارها باید بسیار صاف باشند تا از راندمان انتقال بالا اطمینان حاصل شود. همانطور که رانگ در یک جلسه پرسش و پاسخ پس از ارائه خود خاطرنشان کرد، "زبری دیواره کناری بسیار مهم است."
رانگ در سخنرانی خود راه حل های دیگر مشکلات را بازگو کرد. استفاده از ژرمانیوم نیمه هادی در این فرآیند، آشکارسازها را ممکن کرد. در مورد تولید نور، ایندیوم فسفید نیمه هادی مرکب این کار را انجام داد. امروزه اینتل لیزرهای فسفید ایندیوم را با کارایی بالا روی تراشه های فوتونیک سیلیکونی خود ادغام می کند.
رونگ گفت که عملکرد لیزر بسیار خوب است. در واقع، او خاطرنشان کرد که فناوری لیتوگرافی سیلیکونی امکان انجام آرایههای لیزری را فراهم میکند، گروههایی از لیزرها که نور را در طول موجهای مختلف با فواصل منظم به بیرون ارسال میکنند. این چیزی است که بدست آوردن آن با اجزای گسسته دشوار است.
قرار دادن منبع نور، موجبرها و آشکارسازها روی یک تراشه باعث افزایش سطح یکپارچگی، کاهش هزینه و افزایش عملکرد می شود. پس از سالها توسعه، اینتل در سال 2016 ارسال دستگاههای ارتباطی نوری فوتونیک سیلیکونی را آغاز کرد و با عرضه دستگاههای جدید، نرخ انتقال داده به طور پیوسته از نرخ شروع 50 گیگابیت در ثانیه افزایش یافت.
به گفته Rong، برخی از تفاوت های کلیدی بین الکترونیک سیلیکون و فوتونیک وجود دارد.
برای یک چیز، هیچ معادل فوتونیکی برای یک بلوک ساختمانی اساسی مانند ترانزیستور وجود ندارد. تفاوت دیگر این است که ابعاد فوتونیک بسیار بزرگتر هستند اما برای برخی از ابعاد به کنترل دقیق تری از نظر درصد نیاز دارند. برای مثال، دو تشدید کننده حلقهای که قطر آنها میکرون است، ممکن است تنها چند نانومتر از نظر طول متفاوت باشند. اما این تغییر جزئی به این معنی است که پنجره های طول موج انتقال تشدید کننده ها به اندازه کافی متفاوت خواهند بود که مشکل ساز شود. این نوع کنترل فراتر از آن چیزی است که لیتوگرافی و الگوسازی می توانند ارائه دهند. بنابراین، اینتل برای اینکه دستگاهها را تسلیم کند، راهی برای تنظیم تشدیدگرها در یک ویفر ایجاد کرد تا عملکرد یکنواختتری داشته باشند.
در مورد آینده، یک هدف کوتاه مدت این است که تراشه های فوتونیک را تا حد امکان به تراشه های الکترونیکی نزدیک کنیم زیرا این رویکرد بهترین عملکرد را ایجاد می کند. یک هدف بلندمدت این است که با کنار هم قرار دادن فوتونیک و الکترونیک در یک دستگاه یکپارچه، این ایده را تا جایی که میتوان پیش برد.
رونگ گفت: "ما معتقدیم که همگرایی بلندمدت محاسبات و ارتباطات در سیلیکون اتفاق می افتد."