Sepanta Laser Spadan

Sepanta Laser Spadan

شرکت سپنتا لیزر اسپادان سهامی خاص
Sepanta Laser Spadan

Sepanta Laser Spadan

شرکت سپنتا لیزر اسپادان سهامی خاص

لیزرهای الکترون آزاد

لیزرهای الکترون آزاد

لیزرهای اشعه ایکس و سایر لیزرهای الکترون آزاد (FEL) • تئوری تابش FEL • شتاب دهنده های الکترون خطی • امواج نوری • اپتیک در سیستم های انتقال پرتو فوتون • تشخیص پرتو الکترون و فوتون • آشکارسازهای فوتون • سیستم های جمع آوری داده ها • ایستگاه های آزمایشی و علم در FELs

جزوه لیزر

لیزرها

لیزرهای گازی

لیزرهای شیمیایی

لیزرهای اگزایمر

لیزرهای حالت جامد

لیزرهای فیبر و دستگاه های فیبر/تقویت کننده

لیزرهای کریستال فوتونیک

لیزرهای نیمه هادی، مواد و کاربردها

فیزیک و کاربردهای دینامیک لیزر نیمه هادی

لیزرهای رنگی

لیزرهای الکترون آزاد

لیزرهای فیبر (Cw و پالس)

لیزرهای رامان (Vis And Ir)

لیزرهای هیبریدی Mid-IR

لیزرهای تولیوم

لیزر وسیله‌ای است که اتم‌ها یا مولکول‌ها را تحریک می‌کند تا نور را در طول موج‌های خاصی ساطع کنند و آن نور را تقویت می‌کند و معمولاً یک پرتو بسیار باریک از تابش تولید می‌کند. انتشار عموماً محدوده بسیار محدودی از طول موج های مرئی، مادون قرمز یا فرابنفش را پوشش می دهد.


برنامه های کاربردی:


1. لیزرها به طور گسترده در تولید استفاده می شوند، به عنوان مثال. برای برش، حفاری، جوشکاری، روکش، لحیم کاری (لحیم کاری)، سخت شدن، تراشیدن، عملیات سطحی، علامت گذاری، حکاکی، ریزماشین کاری، رسوب لیزری پالسی، لیتوگرافی و غیره.


2. از لیزر برای جراحی نیز استفاده می شود و از امکان برش بافت ها و در عین حال کمترین خونریزی و در اصلاح بینایی دندانپزشکی، پوست، انواع درمان های زیبایی مانند برداشتن خالکوبی و رفع موهای زائد استفاده می شود.


3. ارتباط فیبر نوری، که عمدتاً برای انتقال داده های نوری در فواصل طولانی استفاده می شود، معمولاً به نور لیزر در فیبرهای شیشه ای نوری متکی است. ارتباطات نوری فضای آزاد، به عنوان مثال. برای ارتباطات بین ماهواره ای، بر روی لیزرهای با قدرت بالاتر، تولید پرتوهای لیزری همسو که در فواصل بزرگ با واگرایی پرتوهای کوچک منتشر می شوند، پیش بینی می شود.


4. اسکنرهای لیزری جهت پرتوهای لیزر را اسکن می کنند که می تواند به عنوان مثال بخواند. بارکدها یا سایر گرافیک ها در فاصله ای مشخص. همچنین امکان اسکن اشیاء سه بعدی وجود دارد، به عنوان مثال. در چارچوب بررسی صحنه جرم


5. مواد جامد را می توان با طیف سنجی شکست ناشی از لیزر تجزیه و تحلیل کرد. میکروسکوپ های لیزری و تنظیمات برای توموگرافی انسجام نوری (OCT) تصاویری از نمونه های بیولوژیکی را با وضوح بسیار بالا، اغلب در سه بعدی، ارائه می دهند. همچنین امکان تصویربرداری عملکردی وجود دارد.

بازیابی شتاب دهنده پلاسما در ده ها نانوثانیه


فناوری پلاسما این نوید را دارد که می‌تواند ذرات باردار را تا انرژی‌های بسیار بالا در فواصل بسیار کوتاه شتاب دهد - و بنابراین با هزینه‌های بسیار کمتر از امکانات امروزی در مقیاس کیلومتر. اما برای اینکه واقعاً کاربردی باشند، چنین دستگاه هایی باید نرخ تکرار خود را چندین مرتبه افزایش دهند.


محققان در آزمایشگاه DESY در آلمان، برای اینکه بفهمند این شتاب‌دهنده‌ها با چه سرعتی اصولاً می‌توانند کار کنند، مدت زمانی را که یک پلاسما طول می‌کشد تا حالت اولیه خود را پس از عبور یک پرتو ذرات با سرعت بالا، یک میدان بیداری در آن ایجاد کند، اندازه‌گیری کرده‌اند. نتیجه آنها: چند ده نانوثانیه - به اندازه کافی کوتاه برای برآوردن فرکانس های مگاهرتزی مورد نیاز برای سخت ترین برخورد دهنده های ذرات و منابع نور


شتاب دهنده در حال ظهور


شتاب‌دهنده‌های ویک‌فیلد پلاسما می‌توانند با شلیک پالس‌های لیزری بسیار شدید یا دسته‌های ذرات به داخل پلاسما و ایجاد نوسانات در الکترون‌های پلاسما در پشت آنها، گرادیان‌های میدان الکتریکی تا چندین گیگا ولت بر متر ایجاد کنند. ذرات باردار یا از داخل خود پلاسما یا تزریق شده از خارج می توانند مانند موج سواران روی موج آب در این مسیر حرکت کنند تا انرژی های بسیار بالایی را تنها در چند سانتی متر به دست آورند (به «گشت و گذار در ویکفیلد»، OPN، فوریه 2022 مراجعه کنید).


این شیب‌ها بسیار بالاتر از آن‌هایی هستند که در شتاب‌دهنده‌های معمولی مبتنی بر حفره‌های فرکانس رادیویی (RF) قابل دستیابی هستند، که سطوح آن‌ها بیش از یک قدرت میدان مشخص شروع به شکستن می‌کنند. به این ترتیب، دانشمندان در تلاش برای توسعه شتاب‌دهنده‌های مبتنی بر پلاسما برای برخورددهنده‌های ذرات باریک (مانند نسل بعدی ماشین‌های الکترون-پوزیترون)، و برای استفاده از لیزرهای الکترون آزاد (FELs) برای استفاده در تحقیقات، صنعت و پزشکی هستند. و به طور بالقوه می تواند در محوطه دانشگاه ها یا بیمارستان های فردی مستقر شود.


با این حال، میزان تکرار همچنان یک مانع بزرگ است. درخشندگی لازم برخورددهنده های ذرات و درخشندگی FEL ها مستلزم آن است که پالس های لیزری یا دسته های ذرات محرک یک شتاب دهنده پلاسما هزاران یا حتی میلیون ها بار در ثانیه تولید شوند. در مقابل، دستگاه‌های wakefield که تا به امروز توسعه یافته‌اند، معمولاً بیش از چند هرتز کار نمی‌کنند.

بازیابی شتاب دهنده پلاسما در ده ها نانوثانیه


دو سلول پلاسما FLASHForward. سلول ها با گاز آرگون پر شده اند که می تواند با تخلیه الکتریکی با ولتاژ بالا یونیزه شود و پلاسما تشکیل دهد. همانطور که پلاسما دوباره ترکیب می شود، نوری در محدوده طول موج آبی ساطع می کند. سپس سلول ها را می توان برای شتاب پلاسمایی دسته های الکترونی در گرادیان های شتاب دهنده گیگاولت بر متر استفاده کرد.

فناوری پلاسما این نوید را دارد که می‌تواند ذرات باردار را تا انرژی‌های بسیار بالا در فواصل بسیار کوتاه شتاب دهد - و بنابراین با هزینه‌های بسیار کمتر از امکانات امروزی در مقیاس کیلومتر. اما برای اینکه واقعاً کاربردی باشند، چنین دستگاه هایی باید نرخ تکرار خود را چندین مرتبه افزایش دهند.


محققان در آزمایشگاه DESY در آلمان، برای اینکه بفهمند این شتاب‌دهنده‌ها با چه سرعتی اصولاً می‌توانند کار کنند، مدت زمانی را که یک پلاسما طول می‌کشد تا حالت اولیه خود را پس از عبور یک پرتو ذرات با سرعت بالا، یک میدان بیداری در آن ایجاد کند، اندازه‌گیری کرده‌اند. نتیجه آنها: چند ده نانوثانیه - به اندازه کافی کوتاه برای برآوردن فرکانس های مگاهرتز مورد نیاز برای سخت ترین برخورد دهنده های ذرات و منابع نور (Nature, doi: 10.1038/s41586-021-04348-8).


شتاب دهنده در حال ظهور

شتاب‌دهنده‌های ویک‌فیلد پلاسما می‌توانند با شلیک پالس‌های لیزری بسیار شدید یا دسته‌های ذرات به داخل پلاسما و ایجاد نوسانات در الکترون‌های پلاسما در پشت آنها، گرادیان‌های میدان الکتریکی تا چندین گیگا ولت بر متر ایجاد کنند. ذرات باردار یا از داخل خود پلاسما یا تزریق شده از خارج می توانند مانند موج سواران روی موج آب در این مسیر حرکت کنند تا انرژی های بسیار بالایی را تنها در چند سانتی متر به دست آورند (به «گشت و گذار در ویکفیلد»، OPN، فوریه 2022 مراجعه کنید).


این شیب‌ها بسیار بالاتر از آن‌هایی هستند که در شتاب‌دهنده‌های معمولی مبتنی بر حفره‌های فرکانس رادیویی (RF) که سطوح آن‌ها بیش از یک قدرت میدان مشخص شروع به شکستن می‌کنند، بسیار بالاتر است. به این ترتیب، دانشمندان در تلاش برای توسعه شتاب‌دهنده‌های مبتنی بر پلاسما برای برخورددهنده‌های ذرات باریک (مانند نسل بعدی ماشین‌های الکترون-پوزیترون)، و برای استفاده از لیزرهای الکترون آزاد (FELs) برای استفاده در تحقیقات، صنعت و پزشکی هستند. و به طور بالقوه می تواند در محوطه دانشگاه ها یا بیمارستان های فردی مستقر شود.


با این حال، میزان تکرار همچنان یک مانع بزرگ است. درخشندگی لازم برخورددهنده های ذرات و درخشندگی FEL ها مستلزم آن است که پالس های لیزری یا دسته های ذرات محرک یک شتاب دهنده پلاسما هزاران یا حتی میلیون ها بار در ثانیه تولید شوند. در مقابل، دستگاه‌های wakefield که تا به امروز توسعه یافته‌اند، معمولاً بیش از چند هرتز کار نمی‌کنند.


شلیک دسته های الکترونی

در آخرین کار، محققان مستقر در آلمان و بریتانیا، به رهبری ریچارد دارسی و ینس اوسترهوف در DESY، تصمیم گرفتند تا مشخص کنند که ذرات محرک میدان بیداری تا چه مدت پلاسما را مختل می کنند. برخلاف امواج الکترومغناطیسی با عمر طولانی در یک حفره RF، میدان ویکفیلد پلاسما تنها پس از چند نوسان از بین می‌رود و بنابراین باید برای هر دسته ذرات شتاب‌دار جدید دوباره ایجاد شود. بنابراین زمان مورد نیاز برای بازگرداندن پلاسما به حالت اولیه خود، حد بالایی را بر نرخ تکرار شتاب دهنده تحمیل می کند.


لیزر مادون قرمز دور یا لیزر تراهرتز

لیزر مادون قرمز دور یا لیزر تراهرتز (لیزر FIR، لیزر THz) لیزری با طول موج خروجی بین 30 تا 1000 میکرومتر (فرکانس 0.3 تا 10 تراهرتز)، در باند فرکانسی مادون قرمز دور یا تراهرتز طیف الکترومغناطیسی است.

لیزرهای FIR در طیف سنجی تراهرتز، تصویربرداری تراهرتز و همچنین در تشخیص فیزیک پلاسما فیوژن کاربرد دارند. آنها می توانند برای شناسایی مواد منفجره و عوامل جنگ شیمیایی، با استفاده از طیف سنجی مادون قرمز یا برای ارزیابی چگالی پلاسما با استفاده از تکنیک های تداخل سنجی استفاده شوند.

لیزرهای FIR معمولاً از یک موجبر طولانی (1 تا 3 متر) پر از مولکول‌های آلی گازی، پمپاژ نوری یا از طریق تخلیه HV تشکیل شده‌اند. آنها بسیار ناکارآمد هستند، اغلب به خنک کننده هلیوم، میدان های مغناطیسی بالا نیاز دارند و/یا فقط قابل تنظیم خط هستند. تلاش‌ها برای توسعه جایگزین‌های کوچک‌تر حالت جامد در حال انجام است.

لیزر p-Ge (ژرمانیوم نوع p) یک لیزر مادون قرمز دور قابل تنظیم، حالت جامد است که بیش از 25 سال است که وجود داشته است.[1] این در میدان های الکتریکی و مغناطیسی متقاطع در دمای هلیوم مایع عمل می کند. انتخاب طول موج را می توان با تغییر میدان های الکتریکی/مغناطیسی اعمال شده یا از طریق معرفی عناصر داخل حفره به دست آورد.

لیزر آبشاری کوانتومی (QCL) ساخت چنین جایگزینی است. این یک لیزر نیمه هادی حالت جامد است که می تواند به طور مداوم با توان خروجی بیش از 100 میلی وات و طول موج 9.5 میکرومتر کار کند. یک نمونه اولیه قبلاً نشان داده شده بود.[2] و استفاده بالقوه نشان داده شده است.[3]

یک لیزر مولکولی FIR که به صورت نوری توسط یک QCL پمپ می شود در سال 2016 نشان داده شده است.[4] این لیزر در دمای اتاق کار می کند و از لیزرهای مولکولی FIR که به صورت نوری توسط لیزرهای CO2 پمپ می شوند، کوچکتر است.

لیزرهای الکترون آزاد همچنین می توانند روی طول موج های مادون قرمز بسیار دور عمل کنند.

لیزرهای قفل شده با حالت فمتوثانیه Ti: یاقوت کبود نیز برای تولید پالس های بسیار کوتاهی استفاده می شوند که می توانند به صورت نوری اصلاح شوند تا یک پالس تراهرتز تولید کنند.

لیزر پیکو ثانیه

لیزر پیکو ثانیه ای لیزری است که پالس های نوری با مدت زمان بین 1 ثانیه و (معمولا) چند ده پیکو ثانیه منتشر می کند. بنابراین همچنین به دسته لیزرهای فوق سریع یا لیزرهای پالس فوق کوتاه تعلق دارد.

گاهی اوقات، سایر منابع مبتنی بر لیزر برای پالس‌های پیکوثانیه - برای مثال OPOهای پمپ شده همزمان - لیزرهای پیکوثانیه نیز نامیده می‌شوند، حتی اگر به طور دقیق بدون لیزر باشند.

انواع مختلفی از لیزر می‌توانند پالس‌های پیکوثانیه‌ای تولید کنند که سایر پارامترهای عملکرد در محدوده‌های وسیعی متفاوت هستند:

رایج ترین منابع لیزرهای حجیم حالت جامد با حالت قفل فعال یا غیرفعال هستند. اینها می توانند پالس های فوق کوتاه بسیار تمیز (تبدیل محدود و کم نویز) با نرخ های تکرار پالس از چند مگاهرتز تا بیش از 100 گیگاهرتز را ارائه دهند. به عنوان مثال، یک لیزر Nd:YAG یا vanadate با حالت غیرفعال قفل شده می تواند به راحتی به عنوان مثال تولید کند. پالس‌های 10 ثانیه با توان خروجی چند وات و لیزرهای دیسک نازک می‌توانند ده‌ها وات را در پالس‌های کوتاه‌تر تولید کنند.
لیزرهای فیبر حالت قفل شده همچنین می توانند طیف گسترده ای از نرخ های تکرار را از چند مگاهرتز تا بیش از 100 گیگاهرتز (با قفل حالت هارمونیک) پوشش دهند. به خصوص با سیستم های MOPA یا MOFA، میانگین توان خروجی بسیار بالا امکان پذیر است. کیفیت پالس از چنین منابعی متفاوت است. به عنوان مثال، پالس ها ممکن است نزدیک به پهنای باند محدود باشند یا نباشند.
نرخ‌های تکرار کمتر با یک جمع‌کننده پالس اضافی امکان‌پذیر است و همچنین امکان تقویت به انرژی‌های پالس بالاتر را فراهم می‌کند. با تقویت کننده احیا کننده، احتمالاً با استفاده از تقویت کننده پالس چیرپ. ریختن حفره لیزر قفل شده یک گزینه دیگر است.
دیودهای لیزری را می توان برای تولید پالس پیکو ثانیه ای قفل کرد (← لیزرهای دایود حالت قفل شده). این منجر به منابع فشرده با نرخ های تکرار پالس معمولی بین 1 گیگاهرتز و صدها گیگاهرتز می شود. با این حال، انرژی پالس به شدت محدود است و کیفیت پالس همیشه بالا نیست.
دیودهای لیزر را می‌توان با تجهیزات الکترونیکی با دقت طراحی شده برای دستیابی به مدت زمان پالس بسیار کمتر از 1 ns، گاهی اوقات حتی زیر 100 ثانیه، سوئیچ کرد. این منجر به منابع بسیار فشرده و بالقوه ارزان می شود، و مزیت دیگر این است که نرخ تکرار پالس را می توان به راحتی در محدوده بسیار وسیعی به سادگی از طریق الکترونیک درایور تغییر داد. مقاله لیزر دایود پیکوثانیه را ببینید.
اگرچه لیزرهای سوئیچ کیو معمولاً پالس های نانوثانیه ای تولید می کنند، لیزرهای ریزتراشه سوئیچ کیو می توانند به مدت زمان پالس بسیار کمتر از 100 ثانیه برسند.
منابع عجیب‌تر پالس‌های پیکوثانیه، لیزرهای الکترون آزاد هستند که می‌توانند انرژی‌های پالس بالایی را حتی در مناطق با طول موج شدید فراهم کنند.

سایر لیزرها و منابع مشابه لیزر

11.1 لیزرهای رنگی قابل تنظیم 399


11.2 منابع پارامتری نوری 404


11.3 منابع ابرپیوسته 408


11.4 فرکانس شانه 408


11.5 منابع فرابنفش شدید 410


11.6 لیزرهای الکترون آزاد 416


11.7 ما چه آموخته ایم؟ 420

لیزرهای الکترون آزاد


لیزرهای الکترون آزاد

لیزر الکترون آزاد یکی از ایده های غیرمعمولی بود که در دهه 1970 پدیدار شد. در سال 1971، جان ام جی مدی پیشنهاد استخراج انرژی از پرتوی الکترون‌های پرانرژی را با خم کردن مسیرهای آنها به جلو و عقب در حین عبور از آرایه‌ای از آهنرباها با قطبیت متناوب ارائه کرد. با لیزر و میزر مایکروویو، تفاوت های قابل ملاحظه ای در این دو رژیم وجود داشت.)


مدی و همکارانش چندین سال بعد را صرف توسعه این مفهوم کردند. در سال 1976 آنها تابش تحریک شده در مادون قرمز را در استانفورد مشاهده کردند. سال بعد آنها نوسان لیزر 112 را نیز در IR مشاهده کردند. شکل 17 مادی و لوئیس الیاس را نشان می دهد که روی یک آزمایش لیزری با الکترون آزاد اولیه کار می کنند.


در اصل، یک لیزر الکترون آزاد می‌تواند یک پرتو لیزر قدرتمند تولید کند و استفاده از یک حلقه ذخیره‌سازی می‌تواند با بازیافت مکرر الکترون‌ها از طریق ویگلر، کارایی را بهبود بخشد. علاوه بر این، طول موج به انرژی الکترون و فاصله آهنربا بستگی دارد، بنابراین قابلیت تنظیم امکان پذیر است، و این اصل را می توان از امواج مایکروویو تا اشعه ایکس اعمال کرد، اگرچه در عمل محدوده هر لیزر تک الکترون آزاد محدود است. با این حال، این جاذبه‌ها با نیاز به یک شتاب‌دهنده الکترونی قدرتمند خنثی شدند و پیشرفت کند بود.