Sepanta Laser Spadan

Sepanta Laser Spadan

شرکت سپنتا لیزر اسپادان سهامی خاص
Sepanta Laser Spadan

Sepanta Laser Spadan

شرکت سپنتا لیزر اسپادان سهامی خاص

یک سوئیچ مغناطیسی برای لیزرهای پلاسمونیک


نانولیزرهای پلاسمونیک، که برای اولین بار در سال 2009 توصیف شد، در حال حاضر در طیف‌سنجی رامان تقویت‌شده سطحی و سایر حسگرهای زیستی استفاده می‌شوند. اکنون یک تیم تحقیقاتی در فنلاند با اختراع یک کلید روشن و خاموش مغناطیسی برای چنین نانولیزرهایی این فناوری را بیشتر بهبود بخشیده است.


دانشمندان دانشگاه آلتو فنلاند، فلزات نجیب مورد استفاده در اکثر نانولیزرهای پلاسمونیک قبلی را با نقاط ریز ساخته شده از دو فلز با واکنش های قوی تر به میدان های مغناطیسی خارجی جایگزین کردند. نوع جدید کنترل می تواند منجر به پردازش بهتر سیگنال روی تراشه و اکتشافات جدید در زمینه فوتونیک توپولوژیکی شود.


نحوه عملکرد نانولیزر

تیم آلتو چندین آرایه دوره‌ای از نانو نقطه‌ها را بر روی زیرلایه‌ای از طلا و یک عایق دی اکسید سیلیکون ساخت. به‌جای ساختن نقطه‌ها از طلای دفع‌کننده مغناطیس، محققان برج‌های استوانه‌ای از لایه‌های نازک متناوب پلاتین و کبالت به قطر 220 نانومتر و ارتفاع 68 نانومتر ساختند. (پلاتین پارامغناطیس است، در حالی که کبالت فرومغناطیسی است.) شبکه ها دارای تناوب 590 نانومتر در هر دو جهت x و y برای آرایه های مربعی و 520 تا 540 نانومتر در جهت y برای آرایه های مستطیلی بودند.


در طول ساخت، دانشمندان نانو نقطه ها را در محلول رنگ لیزری مادون قرمز به نام IR-140 غوطه ور کردند. این تیم یک آرایه را با تحریک آن با پالس‌های 200 fs دایره‌ای چپ یا راست تابش 800 نانومتری به لیزر تبدیل کردند. حداکثر طول موج نور خروجی تقریباً 890 نانومتر بود.


Päivi Törmä، فیزیکدانی که سرپرست گروه دینامیک کوانتومی آلتو است، می‌گوید: «این لیزرهای پلاسمونیک از بسیاری جهات مانند یک لیزر معمولی عمل می‌کنند. "محیط افزایش، مولکول های رنگ در یک محلول است که نزدیک به آرایه قرار می گیرد، و "رزوناتور" وجود یک لبه نواری است که بازخورد را ارائه می دهد (این اصل مشابه چیزی است که به طور گسترده در لیزرهای بازخورد توزیع شده معمول استفاده می شود) "


هنگامی که محققان میدان مغناطیسی را معکوس کردند، دریافتند که آستانه و شدت لیزر بسته به جهت مغناطیسی تغییر می کند. در واقع، در یک جریان پمپ درست بالاتر از آستانه لیزر، تیم گزارش می‌دهد که می‌تواند شدت لیزر را تا 75 تا 90 درصد با کلیدزنی مغناطیسی تعدیل کند و به طور موثر یک کلید روشن و خاموش ایجاد کند.


یک پلت فرم توپولوژیکی-فوتونیکی؟

با بررسی تأثیر سوئیچینگ مغناطیسی بر رفتار لیزر، این تیم همچنین شواهدی از تقسیم بین دو حالت لیزر کایرال مخالف را مشاهده کردند. طبق این مقاله، این نوع تقسیم توسط شکست تقارن معکوس زمانی (یعنی جهت مغناطیسی) "در ایجاد سیستم های توپولوژیکی غیر پیش پا افتاده ضروری است."


آنالوگ های فوتونیک به اصطلاح عایق های توپولوژیکی در فیزیک ماده متراکم موضوعی داغ برای چندین سال بوده است (به «سیستم های فوتونیک توپولوژیکی»، OPN، می 2018 مراجعه کنید). تصور می‌شود که فوتونیک توپولوژیک می‌تواند به طور بالقوه انواع جدیدی از پردازش سیگنال و سایر کاربردهایی را که در برابر بی نظمی، نقص‌های مواد و اختلالات خارجی مقاوم هستند، اجازه دهد. و گروه Aalto فکر می‌کند که نانولیزرهای کنترل‌شده مغناطیسی آنها می‌تواند «سکوی هیجان‌انگیزی» برای مطالعه چنین اثرات توپولوژیکی باشد.


تورما می‌گوید: «حالت‌های کایرال و سایر اثرات کایرالی که می‌بینیم، تأثیر قوی شکست تقارن معکوس زمانی را که مغناطش ذرات ایجاد می‌کند، منعکس می‌کند، و این شکست تقارن، همراه با هندسه شبکه مناسب، می‌تواند بعداً برای تولید سیستم‌های توپولوژیکی مورد استفاده قرار گیرد.» می گوید. مهم است که وجود ساختار آرایه و حالت‌های شبکه مربوطه در کار ما برای تقویت اثرات مورد انتظار مغناطیسی یافت شد - این قابل توجه است و نوید مطالعات توپولوژیکی را در آینده می‌دهد.


تورما تاکید می کند که او و همکارانش هنوز به لیزر غیر متقابل دست نیافته اند، که زمانی رخ می دهد که تقارن معکوس زمانی سیستم شکسته شود. با این حال، او می گوید، احتمالاً می توان آن را در تغییرات آینده در این نوع نانولیزر مشاهده کرد.


پیگیری درخواست ها

قدم بعدی تورما و همکارانش ساختن سیستم های فوتونیک توپولوژیکی واقعی است. او می گوید: «سوئیچینگ مغناطیسی را می توان به عنوان مکانیزم کنترلی در هر نانولیزر پلاسمونیکی از این نوع استفاده کرد. "اگر کسی شروع به دنبال کردن چنین برنامه هایی کند، آنها می توانند ظرف چند سال قابل اجرا باشند، زیرا این فناوری در حال حاضر روی تراشه است."


به گفته تورما، بزرگترین مانع در دستیابی به چنین نانولیزرهای یکپارچه در کاربردهای واقعی، دستیابی به یک سیستم پمپاژ الکتریکی به جای پمپ نوری خواهد بود. با این حال، اگر این کار محقق شود، او تعدادی استفاده بالقوه را برای این لیزرهای کوچک و سوئیچ مغناطیسی متصور است. به عنوان مثال، نانولیزرهای پلاسمونیک را می توان در سنجش استفاده کرد، زیرا پدیده لیزر حتی تغییرات کوچکی را در ساختار حالت (ناشی از چیزی که فرد می خواهد تشخیص دهد) را تقویت می کند.



اسپایر یا لیزر پلاسمونیک

اسپایر یا لیزر پلاسمونیک نوعی لیزر است که هدف آن محدود کردن نور در مقیاس طول موج بسیار کمتر از حد پراش نور ریلی ، با ذخیره بخشی از انرژی نور در نوسانات الکترون به نام پلاریتونهای پلاسمون سطحی است.  این پدیده اولین بار توسط برگمان و استاکمن در سال 2003 توصیف شد.  کلمه spaser مخفف کلمه "تقویت پلاسمون سطحی توسط تابش تحریک شده" است. اولین دستگاههای این چنینی در سال 2009 توسط سه گروه اعلام شد: یک ذره نانو با قطر 44 نانومتر با یک هسته طلایی احاطه شده توسط یک محیط افزایش سیلیس رنگی که توسط محققان دانشگاه های Purdue ، Norfolk State و Cornell ایجاد شده است ،  یک نانوسیم روی یک نقره صفحه نمایش توسط یک گروه برکلی ،  و یک لایه نیمه هادی 90 نانومتری احاطه شده توسط نقره ای که توسط گروه های دانشگاه صنعتی آیندهوون و دانشگاه ایالتی آریزونا به صورت الکتریکی پمپ می شود.   ادامه مطلب ...