تبدیل فوریه طیف سنجی مادون قرمز
استفاده از طیفسنجی مادون قرمز برای تشخیص بیماری COVID-19 نسبتاً جدید است. تلاشهایی برای جفت کردن ابزارهای طیفسنجی با مدلهای هوش مصنوعی به منظور شناسایی ویروس SARS-CoV-2 انجام شده است. کیتان و همکاران روشی را برای شناسایی SARS-CoV-2 با استفاده از نمونههای RNA استخراجشده با ترکیب تکنیکهای FTIR و یادگیری ماشین (ML) توسعه داد. نمونه های نازوفارنکس جمع آوری شده از 280 بیمار برای استخراج RNA پردازش شدند. دامنه های طیفی FTIR که در 600-1350 cm-1 قرار دارند. 1500-1700 cm-1؛ و 2300-3900 cm-1 به اثر انگشت RNA نسبت داده شد [20]. مشتقات طیف خام بهدستآمده برای عادیسازی دادههای طیف تبدیلشده استفاده شد. الگوریتم های یادگیری ماشین برای ساخت مدل های طبقه بندی استفاده شد. تعداد زیادی نمونه و تکنیکهای طبقهبندی پراکنده برای بهبود ویژگی، حساسیت و دقت تجزیه و تحلیل دادهها و همچنین برای افزایش قابلیت تفسیر مدلها استفاده شد. این رویکرد پس از استخراج RNA تنها چند دقیقه زمان آزمایش میبرد و در عین حال ویروس SARS-CoV-2 را با حساسیت 97 درصد، دقت 97.8 درصد و ویژگی 98.3 درصد تشخیص میدهد. در مطالعه دیگری، ژانگ و همکاران از تکنیک تشخیص ATR-FTIR برای تشخیص بیماری COVID-19 در نمونه های سرم 3 میکرولیتری استفاده کردند. تجزیه و تحلیل ترکیبی طیفسنجی و آماری برای نمونههای مثبت COVID-19 و نمونههای کنترل انجام شد. تجزیه و تحلیل جزئی حداقل مربعات متمایز (PLS-DA) به تمایز سویه ویروسی SARS CoV-2 از التهاب یا سایر عفونتهای ویروسی تنفسی کمک کرد. این رویکرد یک ناحیه زیر منحنی مشخصه عملکرد گیرنده (AUROC) مقدار 0.956 [21] را ارائه کرد. به طور مشابه، Banerjee و همکاران روش اکتساب ATR-FTIR را به ترتیب با مدل های تجزیه و تحلیل تفکیک حداقل مربعات جزئی (PLS-DA) به کار بردند. در نظر گرفتن طیف ATR-FTIR و پارامترهای بالینی (به عنوان مثال، جنس، سن، وضعیت فشار خون بالا و وضعیت دیابت) باعث افزایش سطح زیر منحنی ROC (AUC) شد، که نشان میدهد این پارامتر چقدر خوب میتواند بین بیمار و نرمال تشخیص دهد. هم برای داده های آموزشی و هم برای داده های آزمون. مجموعه آزمون مستقل 94.1٪ حساسیت و 69.2٪ ویژگی به دست آورد. نمونه هایی از بیماران دیابتی، منطقه FTIR 1020-1090 cm-1 و FTIR منطقه 1588-1592 cm-1 قوی ترین پیش بینی کننده ها بودند [22]. گولکن و همکاران تشخیص بیماری کووید-19 را در سرم خون زنان علامت دار و بدون علامت و باردار مورد مطالعه قرار دادند. نمونه های زنان باردار مبتلا به بیماری کووید-19 و زنان باردار سالم مورد مقایسه قرار گرفتند [23]. نمونه ها با استفاده از FTIR آنالیز شدند. تغییرات اوج با رویکردهای یادگیری ماشین چند متغیره (به عنوان مثال، یک الگوریتم جنگل تصادفی، یک الگوریتم درخت تصمیم تک C5.0، و یک شبکه عصبی عمیق) تجزیه و تحلیل شد. سطوح بیوشیمیایی، سطح سلولهای خون محیطی و پارامترهای انعقادی برای زنان باردار در شکل 2 نشان داده شده است. دقتی بیش از 90 درصد با استفاده از این رویکرد نشان داده شد [23].
توسعه یک رویکرد قابل اعتماد، سریع و کم هزینه با افزایش حساسیت برای تشخیص ویروس SARS-CoV-2 و بیماری COVID-19 یک اولویت مهم جامعه علمی است. این بررسی مروری بر رویکردهای فوتونیکی ارائه می دهد که برای تشخیص عفونت SARS-CoV-2 و بیماری COVID-19 در حال بررسی هستند.
اساساً همه دیودهای لیزر، لیزرهای موجبر هستند، با هدایت نوری حداقل در یک جهت. برخی از دیودهای لیزر کم مصرف حتی از هدایت تک حالته استفاده می کنند. بزرگترها (مانند دیودهای لیزری با مساحت وسیع و میله های دیود) حداقل در یک جهت رفتار چند حالته از خود نشان می دهند.
لیزر موجبر لیزری است که حاوی یک موجبر به عنوان واسطه بهره است.
انواع لیزرهای موجبر
انواع مختلفی از لیزرهای موجبر وجود دارد:
لیزرهای موجبر حالت جامد معمولا بر اساس برخی از موجبرهای مسطح یا کانالی در برخی قطعات کریستالی یا شیشه ای ساخته می شوند.
لیزرهای فیبر نیز لیزرهای موجبر هستند.
اساساً همه دیودهای لیزر، لیزرهای موجبر هستند، با هدایت نوری حداقل در یک جهت. برخی از دیودهای لیزر کم مصرف حتی از هدایت تک حالته استفاده می کنند. بزرگترها (مانند دیودهای لیزری با مساحت وسیع و میلههای دیود) حداقل در یک جهت رفتار چند حالته از خود نشان میدهند.
در برخی از لیزرهای CO2 از ساختارهای موجبر نیز استفاده می شود. مزایا این است که ابعاد عرضی لوله گاز را می توان کاهش داد تا خنک کننده موثر گاز لیزر به دست آید و کیفیت پرتو به دست آمده می تواند بسیار بالا باشد.
ویژگی های بارز لیزرهای موجبر
مهمترین مزیت استفاده از موجبر این است که به طور موثر واگرایی پرتو حذف می شود، به طوری که می توان شدت نوری بالا را در طول طولانی حفظ کرد. این به نوبه خود امکان دستیابی به بهره نوری بالا و راندمان بهره بالا را حتی برای انتقال های لیزری دشوار و با قدرت پمپ محدود می کند. با این حال، این مزیت ممکن است تا حدی با تلفات انتشار در موجبر جبران شود، که ممکن است به طور قابل توجهی بیشتر از مواد حجیم باشد.
ترکیب طول انتشار طولانی و ناحیه حالت کوچک می تواند تأثیر شدیدی از غیرخطی بودن مواد ایجاد کند. این می تواند عملکرد دستگاه های خاصی را محدود کند، در حالی که در موارد دیگر از اثرات غیرخطی به نوعی استفاده می شود. برای مثال، لیزرهای فیبر رامان از پراکندگی رامان تحریکشده قوی بهرهبرداری میکنند.
اثرات حرارتی مانند عدسی حرارتی در رسانه افزایش تا حد زیادی توسط هدایت موج سرکوب می شود، به ویژه در مورد هدایت تک حالته. از آنجایی که اثرات حرارتی روی ضریب شکست معمولاً ضعیفتر از کنتراست ضریب هدایت است، آنها فقط به تغییر شکل جزئی حالت هدایت منجر میشوند که هیچ پیامد قابلتوجهی ندارد.
لیزرهای موجبر را می توان با سایر عناصر نوری در همان دستگاه ادغام کرد، به عنوان مثال. با مدولاتورهای نوری برای سوئیچینگ Q، قفل کردن حالت فعال یا تنظیم طول موج. این مورد به ویژه هنگامی که محیط بهره یک ماده کریستالی غیرخطی مانند لیتیوم نیوبات (LiNbO3) یا یک نیمه هادی است، صادق است. یک لیزر موجبر حتی ممکن است بخشی از یک مدار مجتمع فوتونیک پیچیده باشد.
یکی از جذابیتهای برخی از لیزرهای موجبر مسطح این است که نور پمپ از یک دیود لیزری را میتوان بدون هیچ گونه نوری بین موجبر متصل کرد.
لیزرهای موجبر معمولاً دارای یک تشدید کننده لیزری یکپارچه هستند که در نتیجه مزایای مختلفی مانند تنظیم پایدار و فشرده دارند.
خلاصه
تعدیل کننده های نور فضایی (SLMs) توانایی قدرتمندی در کنترل امواج الکترومغناطیسی از خود نشان می دهند. مشخص شده است که آنها کاربردهای متعددی در فرکانس های تراهرتز (THz) دارند، از جمله ارتباطات بی سیم، هولوگرافی دیجیتال و تصویربرداری فشرده. با این حال، توسعه به سمت SLM THz در مقیاس بزرگ، چند سطحی و چند عملکردی با چالشهای فنی مواجه است. در اینجا، یک متاماده THz قابل برنامه ریزی الکتریکی متشکل از آرایه ای 8×8 پیکسل ارائه شده است که در آن ماده تغییر فاز دی اکسید وانادیم (VO2) تعبیه شده است. پس از سرکوب موفقیت آمیز تداخل از پیکسل های مجاور، موج THz را می توان به روشی قابل برنامه ریزی مدوله کرد. سرعت سوئیچینگ هر پیکسل به ترتیب 1 کیلوهرتز است. به طور خاص، با استفاده از اثر هیسترزیس VO2، اثر حافظه نشان داده میشود. دامنه THz هر پیکسل را می توان با تک تک پالس های جریان نوشت و پاک کرد. علاوه بر این، تصاویر چند حالته THz را می توان تولید و ذخیره کرد. این متاماده قابل برنامه ریزی با عملکرد حافظه می تواند به سایر باندهای فرکانسی گسترش یابد و مسیری را برای پردازش اطلاعات الکترومغناطیسی باز می کند.